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Simulation of characteristics and artificial neural network modeling
of electroencephalograph time series
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~Received 31 May 1996!

Electroencephalograph data of normal individuals with their eyes closed is analyzed and modeled. The
characteristics of the observed time series correspond to a filtered Gaussian random noise model modified with
a suitable falloff in the power spectrum. An artificial neural, network model produces an excellent fit to the
relatively short time series data without any hidden neurons, implying that the underlying system is predomi-
nantly deterministic and linear.@S1063-651X~97!01104-5#

PACS number~s!: 87.22.2q, 87.10.1e
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There has been considerable interest in applying meth
of nonlinear dynamics to the electroencephalograph~EEG!
data@1#. In order to understand the nature and dynamics
the underlying system various characteristics@2# of the EEG
time series such as power spectrum, correlation dimens
embedding dimension, Lyapunov exponent, surrogate
study, deterministic versus stochastic~DVS! plot, structure
function, etc. have been investigated. The conclusions dr
from these studies are not completely reliable because
EEG time series is most often short and noisy@1#. All the
same, there appears to be general agreement that for no
individuals in resting state~eyes closed! the underlying sys-
tem is of high dimension and does not exhibit low dimens
deterministic chaotic behavior. Also, the questions whet
the system is linear or nonlinear and deterministic or stoch
tic are not altogether settled@1#.

In this paper, we study the eyes closed electroenceph
graph~ECEEG! time series with special emphasis on sim
lation. The idea is to construct a model time series t
would simulate the observed ECEEG characteristics. T
would enable one to arrive at more definite conclusio
about the nature of the ECEEG data. More precisely, we
consider a filtered time series generated from a Gaus
random noise model and compare the characteristics
those obtained with the ECEEG data. We find that, exc
for the autocorrelation function~ACF!, the power spectrum
and the embedding dimension, the characteristics we stu
are very similar for the two systems. We then suitab
modify the power spectrum of the stochastic~Gaussian ran-
dom noise! model and show that it is able to qualitative
simulate all the characteristics of the ECEEG data includ
the ACF and the embedding dimension.

On the basis of our studies we conclude that the ECE
data we analyzed are weakly nonlinear and deterministic
spite of the existence of nonlinearities the DVS plots for
relatively short time series do not reflect any such behav
This is also confirmed by carrying out an artificial neu
network ~ANN! modeling of the time series, where we fin
an excellent fit with no neurons in the hidden layer.

We next give some details of our analysis, simulati
studies, and ANN modeling. As regards the data@3#, the
EEG data were collected from the 8 loci of the internatio
10–20 system using a conventional EEG machine~Neuro-
551063-651X/97/55~4!/4508~4!/$10.00
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fax, Nihon Khoden! coupled to a 486 PC-AT system wit
analog to digital converters~DT-2841! and array processor
~DT-7020! of Data Translation Inc. Four normal male su
jects having no history of neurologic or psychiatric disorde
participated~mean age 28.5, standard deviation 3.25, ran
22–35!. Subjects were tested in the morning in a soun
proof, electrically shielded room, while sitting on a comfo
able chair. Silver cup electrodes were attached to the 8 s
loci (F3, T3, P3, O1—reference electrode atA1; F4, T4,
P4, O2—reference electrodeA2 and the forehead groun
electrode! for monopolar recording. They were instructed
be in a relaxed state with their eyes open for 5 min and t
closed for 5 min. On-line digital recording continued fo
30–45 minutes for each subject and the procedure was
peated four times on the same subject. The EEG signals w
digitized at 256 samples/channel/s to the PC-AT and la
ported to an HP-9000/735 Graphics Workstation. The sign
were filtered through a bandpass filter~0.5–32 Hz, fourth
order Butterworth twice cascaded! after subjecting them to
baseline corrections. Data of each subject are visu
screened to obtain artifact free data of at least 8 s duration.
The analysis was conducted in the EEG segments from
F3 frontal channel, which may not contain stronga, but we
clearly see it in the posterior leadP4 records.

We analyzed a number of different ECEEG time ser
consisting of 4096 data points from channelF3. The data
sets were taken from four people, and from each individua
record we included a number of stretches of 4096 points.
results we report here are for one record but they are re
sentative and characteristic of all theF3 ~eyes closed!
records we analyzed. Thus, we expect these results to
valid for normal people in the resting state with their ey
closed. We used the method of average mutual informa
for determining the lag timet @4# and the method of false
nearest neighbors@4# to obtain the embedding dimensiond.
In actual calculations,t is the first minimum in the plot of
average mutual information against time lag. For this va
of t, we taked to be the first zero in the plot of the numbe
of false nearest neighbors versus dimension. We also ve
that this zero is followed by all zeros~or small values! for
higher values of dimension. In a typical case we gett 5 9
andd 5 12. Figure 1 shows the power spectrum, the num
4508 © 1997 The American Physical Society
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55 4509SIMULATION OF CHARACTERISTICS AND . . .
of false nearest neighbors against dimension, the DVS
@5#, and the ACF. We observe@Fig. 1~a!# that the power
spectrum is broadband and falls off with frequency as
pected from a nonlinear system@6#. The falloff can be fitted
equally well by either an exponential or a power law, a
hence from this result we are unable to say if the nonline
ties are due to the deterministic or stochastic nature of
system. The value of embedding dimensiond 5 12 @Fig.

FIG. 1. Characteristics of filtered ECEEG data.
ot
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1~b!# indicates that one has a high dimension system tha
very likely deterministic. The DVS plot@Fig. 1~c!# shows
that the rms error falls rapidly by a factor of about 2 as
increase the number of neighborsNnn, and has a minimum
for Nnn' 250. The initial fall occurs because of the effect
fluctuations in the data. This effect dominates for a sm
number of neighbors and decreases with an increase
Nnn. The fact that the minimum is away from smallNnn
implies that the system is certainly not a low dimension c
otic system. The near constancy beyondNnn' 250 suggests
that a global linear model is most likely very good. Th
autocorrelation function@Fig. 1~d!# exhibits long time coher-
ence and hence deterministic behavior@7#. We also evaluated
the largest Lyapunov exponent using Wolf’s@8# method and
find the value to be 0.0651. This indicates that the nonline
ity ~if any! is weak. Of course for the short noisy series th
we have, the result cannot be very reliable. In order to
these findings we generate a time series from a Gaus
random noise model and apply the same filter as we did
the ECEEG data. Again we determine the characteristic
this model @filtered Gaussian random noise~FGN!# series.
The results are shown in Fig. 2. Note that there is no fall
in the power spectrum. The number of false nearest ne
bors rises after going through a minimum and in the DV
plot the rms error falls by only 20%, and remains constan
a relatively large value. The autocorrelation function a
falls sharply and then oscillates about zero. Thus, it is cl
that ECEEG data are certainly not compatible with the FG
model as implied by Albano and Rapp@9# in their simula-
tion. It ought to be stressed that the result is valid for
frequencies allowed by the band pass filter~0.25–32 Hz! and
not only for thea activity.

To further clarify these issues we modified the filter
Gaussian random noise time series by artificially provid
an exponential falloffe2a f(a50.23) in the power spectrum
This model, called the simulated EEG~SEEG! model, gives
a falloff of ;1023 at f; 30 cycles/s. The characteristics o
this time series are shown in Fig. 3. We observe that
simulated times series has the same qualitative feature
the ECEEG data shown in Fig. 1. Similar qualitative resu
are also obtained by providing a power law (1/f 2) falloff in
the power spectrum of the filtered Gaussian random no
model.

We also carried out an ANN study of the ECEEG tim
series, with and without neurons in the hidden layer. T
number of neurons in the input and output layers weren1 5
12 and n3 5 1, respectively. When a hidden layer wa
present the number of neurons in it wasn2 5 8. The transfer
function was hyperbolic tangent for the hidden layer a
linear for the output layer. The network is trained using t
conventional back propagation method@2#. It ought to be
recalled that without the hidden layer one is attempting
model the time series according to

xt115 (
k51

d

akxt2~k21!t . ~1!

When one includes a hidden layer the model is given by

xt115 f ~xt ,xt2t , . . . ,xt2~d21!t!. ~2!
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The measure for the quality of fit is defined by average re
tive variance (FARV)

FARV5
1/N( i51

N Ei
2

~ variance ofN data points!
, ~3!

whereEi is the error difference between thei th observed and
calculated values. The network was trained using the

FIG. 2. Characteristics of filtered Gaussian random noise~FGN!
time series.
-

st

3200 data points. The remaining 896 data points~test set!
were used to evaluateIARV @Eq. ~3!#. The main result of the
ANN modeling of the ECEEG data is that the quality of th
fit is essentially the same for a linear~no hidden neurons
FARV50.0703) and a nonlinear~with hidden neurons;
FARV50.0705! network. These results show that the ECEE
series can be very nicely fitted by a pure linear autoreg
sive model. A comparison of the results of calculation of t
ANN model with the test data set is shown in Fig. 4. No

FIG. 3. Characteristics of simulated EEG~SEEG! time series.
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55 4511SIMULATION OF CHARACTERISTICS AND . . .
that Palus̃@10# has concluded from his analysis of the EEG
data that the system is linear and stochastic. We find that it
linear and deterministic. As an interesting aside we find th
the SEEG series can also be very well fitted by a linear AN
model.

FIG. 4. Comparison of calculation of ANN model with the tes
data set.
r-
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is
t

In summary, we find the following features in the ECEE
data that we analyzed.~i! ECEEG datacannotbe understood
in terms of a purely filtered Gaussian random noise mod
~ii ! From the power spectrum, the data exhibit nonlinearit
~weak! but from the falloff in frequency it has not been po
sible for us to conclude if it is due to deterministic chaos
stochastic dynamics. The nonlinear behavior is not see
DVS plots.~iii ! The embedding dimension is high.~iv! From
the DVS plot and ANN modeling we clearly find that th
system is linear.

We emphasize that these results refer only to the ey
closed data. Under the condition of eyes open or provid
sensory stimuli the analysis reveals quite different featu
Finally, in view of these findings we conjecture that in th
present case the falloff in the power spectrum ought to
exponential, indicating that the system is weakly nonline
and weakly chaotic, with high embedding dimension.
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