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Simulation of characteristics and artificial neural network modeling
of electroencephalograph time series
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Electroencephalograph data of normal individuals with their eyes closed is analyzed and modeled. The
characteristics of the observed time series correspond to a filtered Gaussian random noise model modified with
a suitable falloff in the power spectrum. An artificial neural, network model produces an excellent fit to the
relatively short time series data without any hidden neurons, implying that the underlying system is predomi-
nantly deterministic and lineafS1063-651X97)01104-5

PACS numbds): 87.22—-q, 87.10+e

There has been considerable interest in applying methodax, Nihon Khoden coupled to a 486 PC-AT system with
of nonlinear dynamics to the electroencephalogrépBG) analog to digital converterdT-2841) and array processors
data[1]. In order to understand the nature and dynamics ofDT-7020 of Data Translation Inc. Four normal male sub-
the underlying system various characterisfgbof the EEG  jects having no history of neurologic or psychiatric disorders
time series such as power spectrum, correlation dimensioparticipated(mean age 28.5, standard deviation 3.25, range
embedding dimension, Lyapunov exponent, surrogate dat@p_35. Subjects were tested in the morning in a sound-
study, deterministic versus stochasti2VS) plot, structure  proof, electrically shielded room, while sitting on a comfort-
function, etc. have been investigated. The conclusions drawgpe chair. Silver cup electrodes were attached to the 8 scalp
from these studies are not completely reliable because th‘éci (F3, T3, P3, Ol—reference electrode &1; F4, T4,

EEG time series is most often short and nojisy. All the P4, O2—reference electrodd2 and the forehead ground

same, therg appears to be general agreement thf’"t for nom?e%ctrode for monopolar recording. They were instructed to
individuals in resting statéeyes closetlthe underlying sys- be in a relaxed state with their eyes open for 5 min and then
tem is of high dimension and does not exhibit low dimension losed for 5 min. On-line digital recording continued for

deterministic chaotic behavior. Also, the questions whethe X h
g 30—45 minutes for each subject and the procedure was re-

the system is linear or nonlinear and deterministic or stocha X . .
tic are not altogether settidd]. peated four times on the same subject. The EEG signals were

In this paper, we study the eyes closed eIectroencephaI@-igitized at 256 samples/channe_l/s to the P_C-AT and_ later
graph(ECEEQG time series with special emphasis on simu- ported_to an HP-9000/735 Graphics Workstatlon. The signals
lation. The idea is to construct a model time series thatvere filtered through a bandpass filt€.5-32 Hz, fourth
would simulate the observed ECEEG characteristics. Thi@rder Butterworth twice cascadedfter subjecting them to
would enable one to arrive at more definite conclusiondaseline corrections. Data of each subject are visually
about the nature of the ECEEG data. More precisely, we firsscreened to obtain artifact free data of at téas duration.
consider a filtered time series generated from a Gaussiahhe analysis was conducted in the EEG segments from the
random noise model and compare the characteristics with3 frontal channel, which may not contain stroagbut we
those obtained with the ECEEG data. We find that, exceptlearly see it in the posterior led®# records.
for the autocorrelation functiofACF), the power spectrum, We analyzed a number of different ECEEG time series
and the embedding dimension, the characteristics we studiggpnsisting of 4096 data points from chanie. The data
are very similar for the two systems. We then suitablysets were taken from four people, and from each individual’'s
modify the power spectrum of the stochagi@aussian ran- record we included a number of stretches of 4096 points. The
dom nois¢ model and show that it is able to qualitatively results we report here are for one record but they are repre-
simulate all the characteristics of the ECEEG data includingentative and characteristic of all te3 (eyes closen
the ACF and the embedding dimension. records we analyzed. Thus, we expect these results to be

On the basis of our studies we conclude that the ECEE®alid for normal people in the resting state with their eyes
data we analyzed are weakly nonlinear and deterministic. liglosed. We used the method of average mutual information
spite of the existence of nonlinearities the DVS plots for thefor determining the lag time- [4] and the method of false
relatively short time series do not reflect any such behaviomearest neighborist] to obtain the embedding dimension
This is also confirmed by carrying out an artificial neural In actual calculationss is the first minimum in the plot of
network (ANN) modeling of the time series, where we find average mutual information against time lag. For this value
an excellent fit with no neurons in the hidden layer. of 7, we taked to be the first zero in the plot of the number

We next give some details of our analysis, simulationof false nearest neighbors versus dimension. We also verify
studies, and ANN modeling. As regards the df#$ the that this zero is followed by all zero®r small values for
EEG data were collected from the 8 loci of the internationalhigher values of dimension. In a typical case we get 9
10-20 system using a conventional EEG machiNeuro- andd = 12. Figure 1 shows the power spectrum, the number
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FIG. 1. Characteristics of filtered ECEEG data.
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1(b)] indicates that one has a high dimension system that is
very likely deterministic. The DVS plofFig. 1(c)] shows
that the rms error falls rapidly by a factor of about 2 as we
increase the number of neighbdXs,, and has a minimum
for Ny~ 250. The initial fall occurs because of the effect of
fluctuations in the data. This effect dominates for a small
number of neighbors and decreases with an increase in
N,,- The fact that the minimum is away from small,,
implies that the system is certainly not a low dimension cha-
otic system. The near constancy beydig~ 250 suggests
that a global linear model is most likely very good. The
autocorrelation functiofFig. 1(d)] exhibits long time coher-
ence and hence deterministic behayitt We also evaluated
the largest Lyapunov exponent using Wolf& method and
find the value to be 0.0651. This indicates that the nonlinear-
ity (if any) is weak. Of course for the short noisy series that
we have, the result cannot be very reliable. In order to test
these findings we generate a time series from a Gaussian
random noise model and apply the same filter as we did to
the ECEEG data. Again we determine the characteristics of
this model[filtered Gaussian random noi¢EGN)] series.
The results are shown in Fig. 2. Note that there is no falloff
in the power spectrum. The number of false nearest neigh-
bors rises after going through a minimum and in the DVS
plot the rms error falls by only 20%, and remains constant at
a relatively large value. The autocorrelation function also
falls sharply and then oscillates about zero. Thus, it is clear
that ECEEG data are certainly not compatible with the FGN
model as implied by Albano and Rapp] in their simula-
tion. It ought to be stressed that the result is valid for all
frequencies allowed by the band pass fil@25-32 Hz and

not only for thea activity.

To further clarify these issues we modified the filtered
Gaussian random noise time series by artificially providing
an exponential fallofe™*'(«=0.23) in the power spectrum.
This model, called the simulated EESEEG model, gives
a falloff of ~10~2 at f~ 30 cycles/s. The characteristics of
this time series are shown in Fig. 3. We observe that this
simulated times series has the same qualitative features as
the ECEEG data shown in Fig. 1. Similar qualitative results
are also obtained by providing a power law )/ falloff in
the power spectrum of the filtered Gaussian random noise
model.

We also carried out an ANN study of the ECEEG time
series, with and without neurons in the hidden layer. The
number of neurons in the input and output layers were=
12 andn; = 1, respectively. When a hidden layer was
present the number of neurons in it was= 8. The transfer
function was hyperbolic tangent for the hidden layer and
linear for the output layer. The network is trained using the
conventional back propagation meth{l]. It ought to be
recalled that without the hidden layer one is attempting to
model the time series according to

of false nearest neighbors against dimension, the DVS plot

[5], and the ACF. We observgFig. 1(a)] that the power
spectrum is broadband and falls off with frequency as ex-
pected from a nonlinear systdi]. The falloff can be fitted

d
Xt+1:k21 AX¢— (k—1)7 - (1)

equally well by either an exponential or a power law, and ] ] o
hence from this result we are unable to say if the nonlineari¥vhen one includes a hidden layer the model is given by

ties are due to the deterministic or stochastic nature of the

system. The value of embedding dimensidn= 12 [Fig.

Xer 1= F(Xe X s oo Xe—(d—1)7)- ()
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FIG. 2. Characteristics of filtered Gaussian random n@t§&N)

time series.

FIG. 3. Characteristics of simulated EEGEEQG time series.

3200 data points. The remaining 896 data poiit¢st sex
The measure for the quality of fit is defined by average relawere used to evaluatggy [Eq. (3)]. The main result of the
tive variance ® ary) ANN modeling of the ECEEG data is that the quality of the
fit is essentially the same for a line@mo hidden neurons;
®,ry=0.0703) and a nonlineafwith hidden neurons;

® ,gy=0.0709 network. These results show that the ECEEG
series can be very nicely fitted by a pure linear autoregres-
whereE; is the error difference between théa observed and sive model. A comparison of the results of calculation of the
calculated values. The network was trained using the firsANN model with the test data set is shown in Fig. 4. Note

o 1/INSN E2
ARV™"('variance ofN data point’

)
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FIG. 4. Comparison of calculation of ANN model with the test
data set.
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In summary, we find the following features in the ECEEG
data that we analyze¢i) ECEEG dataannotbe understood
in terms of a purely filtered Gaussian random noise model.
(ii) From the power spectrum, the data exhibit nonlinearities
(weak but from the falloff in frequency it has not been pos-
sible for us to conclude if it is due to deterministic chaos or
stochastic dynamics. The nonlinear behavior is not seen in
DVS plots.(iii) The embedding dimension is higliv) From
the DVS plot and ANN modeling we clearly find that the
system is linear.

We emphasize that these results refer only to the eyes-
closed data. Under the condition of eyes open or providing
sensory stimuli the analysis reveals quite different features.
Finally, in view of these findings we conjecture that in the
present case the falloff in the power spectrum ought to be
exponential, indicating that the system is weakly nonlinear
and weakly chaotic, with high embedding dimension.
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